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I

FOREWORD

This report is one of a series of related papers covering various aspects of

a broad program to investigate the flow-field variables associated with hypersonic-

velocity projectiles in free flight under controlled environmental conditions.

This research is being conducted in the Flight Physics Range of General Motors

Defense Research Lauoratories, and is supported by the Advanced Research

Projects Agency under Contract No. DA-04-495-ORD-3567 (Z). It is intended

that this series of reports, when completed, shall form a background of knowl-

edge of the phenomena involved in the basic study and thus aid in a better under-

standing of the data obtained in the investigation.

I

iit



GM DEFENSE RESEARCH LABCRATORIES ( GENERAL MOTORS CORPORATION

TR63-217G

ABSTRACT

Several commonly used approximations of the transmission coefficient

of a uniform plasma slab are critically examined and compared with a new

approximation developed in this report. It is shown that the new approxima-

tion, in addition to being very suitable for use on digital computers, gives

much higher accuracy than any other one over most useful values of plasma

and collision frequencies. A series of charts shows the regions of validity

of each approximation in the plasma frequency-collision frequency plane

for various amounts of error and slab thicknesses.

v
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INTRODUCTION

In many physical situations it is desirable to measure the electron density

and electron collision frequency of an ionized medium, which determine its

electromagnetic constitutive parameters, without material contact between the

measuring instrument and the plasma. The free-space, microwave propagation

technique, many variations of which have been described in the literature(13)

is extremely useful ior-this purpose. In the most general form of this technique,

a microwave beam of known field structure is used to illuminate the plasma and

measurements are made of the amplitude and phase of both the transmitted and

the reflected fields. The interpretation of these measurements in terms of

plasma properties depends on a theoretical model of the plasma-microwave

interaction, which is often highly idealized in the interests of analytical

simplicity, However, in many instances, good results may be obtained by

comparing the measured data with calculations based on the theory of the

interaction of a uniform plane electromagnetic wave with a plane parallel-

sided homog-.neous plasma slab. Even in this simplified case it is sometimes

necessary to approximate the exact analytical expressions in order to facilitate

numerical interpretation. Several such approximations have been widely

used, (1,3, 4,5) but rarely with any precise knowledge of the error incurred. It

is the specific purpose of this report to review these approximations as well
(6,7)

as several others, to calculate the error compared to the exact theory in

each case, and to define the range of validity of each approximation. Errors

which- result from the lack of similitude between the experimental configuration

and the theoretical model are not considered here.

Following a discussion of the desirability of measuring the transmission

coefficient of a plane slab as opposed to the reflection coefficient, the various

approximate expressions for the transmission coefficient are reviewed in

* Raised numbers in parentheses refer to references, listed at the end of

this report.
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relation to a new approximation presented in this report. This new approxima-

tion has two major features. First, the normalized plasma frequency 0' * and
p

normalized collision frequency 0 ' as determined from the approximate formu-c

las agree within a few percent with the exact values over most plasma conditions

of practical interest. Second, D0' and V' are given by simple algebraic
p c

expressions which can be easily incorporated into digital-computer programs.

This latter feature is regarded as an essential criterion in determining whether

a, given approximation is useful, because in much of microwave plasma diagnos-

tics (especially that devoted to transient events) a large amount of data reduction

is required, and thus the use of a digital computer for data processing is

necessary. The iterative determination of V and 0l from transcendental
p

equations involving the measured transmission coefficient (which is required

if the rigorous expressions are used) requires prohibitively long computer-

operation time. An additional feature of this new approximation is that C'
p

and V' are expressed as sums of terms containing the measured quantities
c

raised to various powers. From this form the poorer approximations are

obtained by neglecting the higher orders of small -terms involving the measured
refrre tointhelitratre(1,2,4,5)

quantities. Approximations referredto in the literature are located in

this hierarchy and are examined, for consistency.

In the examination of each approximation, in addition to the consistency

test, fl' and C are computed from the approximate formulas and areP C
compared to the exact values over most practical conditions of interest. The

approximations considered in addition to the approximation developed in this

paper ate for a loss-free plasma,(1 ,4)a low-loss plasma, 2)and an underdense

plasma. (7 ) Finally, all approximations are compared by plotting prescribed error

limits in an (I - rc plane, which Illustrates in a graphic way the useful
p

operating range of each approximation.

* The prime indicates an approximate quantity and the absence of the prime

indicates the exact value.

2
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THE TRANSMISSION AND REFLECTION COEFFICIENTS

OF A PLANE PLASMA SLAB

I;

For a uniform plane electromagnetic wave, normally incident on a plane

parallel-sided homogeneous plasma slab, the external quantities that are

available for measurement are the complex transmission and reflection

coefficients. Assuming that the plasma may be regarded as an equivalent

dielectric, the expressions for the transmission and reflection coefficients

can then be written by referring to any standard derivation of the transmission

and reflection coefficients of a dielectric layer (see, for example, References

8 and 9). The transmission coefficient is given by

4 Nexp [-j k d (Np -I)

(N + 1)2 -(N - 1)2 exp -2y d)
p p p

where E and E. are the complex amplitudes of the electric fields of the trans-
t I

mitted and incident waves, respectively, evaluated at the slab interface where

the transmitted wave emerges, and2 /

Np ) 1/ complex refractive index of plasma
c

p q 2 1/2
-P W 1 _ q n = normalized plasma frequencyfp a'J ' em

v

S= = normalized collision frequency
c W'

S= angular plasma frequency
P

V c collision frequency of electrons

W angular frequency of incident wave

q = charge on an electron

m = mass of an electron

n = electron density

= capacitivity of free space
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v v
Xv  = free space wavelength of incident wave

v

d = thickness of the plasma slab

= j k N = propagation constant for a plane electro-
P p magnetic wave in plasma

The definition of the transmission coefficient in Expression (1) is convenient

because the phase of T is then identical to the phase change that would be
measured when the plasma slab is introduced into the path of the electro-

magnetic wave.

Similarly, the reflection coefficient is defined as

EN (-NN ) [I -exp(-2vpd)]
r =

(N + 1) - (N - 1) exp(-2ypd)p p

where Er and Ei are the complex amplitudes of the reflected and: incident
electromagnetic waves, respectively, evaluated, at the incident interface of the

plasma slab.

The plasma slab exhibits wave propagation characteristics similar to those
(10)of the unbounded plasma medium. For negligible collision frequency

(Oc< < 1) transmission occurs for plasma frequencies below the critical
plasma frequency (n0p_< 1). The transmitted wave is virtually cut off for
Sp> 1. Reflection is low in the transmission region () p< 1) and high in the

cut-off region (A > 1). Significant fluctuations in both quantities occur as
p

O approaches unity. As the collision frequency increases, transmission
'p

decreases in the transmission region and the cut off near critical plasma
frequency (CIP = 1) is less well defined. For large c the transmission and

reflection coefficients change very gradually, so that the transmission and
cut-off regions can nolonger be defined.

4
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If either the complex transmission or reflection coefficient is known, the

plasma properties Cp and P0c can be deduced uniquely providing that the
p

thickness d is known. In cases where d is not known, bo)th coefficients in

their complex form are needed. It will be assumed hereaftei "at d is known.

The measurement of the reflection coefficient presents several experimental

difficulties. First, the practical problems which arise in separating the received

reflected microwave signal from leakage from the microwave transmitter are con-

siderable. Unless extreme precautions are taken, a fraction of the transmitter

signal will be present in the receiver and interference will take place. The

resulting signal will depend on the relative phase between the reflected and

leakage signals,and this depends on the absolute phase stability of the trans-

mitter. Second, the phase of the reflected signal critically depends on the

distance between the transmitter and the reflecting interface. If the phase of

the reflection coefficient is to be measured, then this distance must be known

absolutely at every instant to a high degree of accuracy. As an example, a

physical movement of the plasma interface by a hundredth of a wavelength of

the incident wave will cause a spurious phase change of T. 2 degrees. Third,

in the transmission region the magnitude of the reflection coefficient is very

small and can be (for the purpose of this discussion) approximated by the

value .1 n- for -n << 1, where nc is the electron density which would cause
c C 1

cut-off at the frequency w. Thus, for - To it follows that IRI <0. 025.

Spurious reflections due to the plasma container, microwave windows, wave-

guide components, etc., can be easily of this order and will cause severe

interference with the reflected signal. Consequently, it is extremely difficult

to accurately measure by the reflection technique electron density in the range
n < -. Fourth, the reflection coefficient is extremely sensitive to any
n 10

ionization gradients in the direction of propagation of the electromagnetic wave.

As was mentioned in the Introduction, a uniform plasma slab is an idealized

model of the real plasma. The sharp boundaries of the idealized slab are never

realize ] in a practical case, and the presence of a diffuse boundary layer is

5
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inevitable. These gradients will act as matching sections to further decrease

actual reflection power and therefore introduce additional error unless precise

information about these gradients is known.

All of these difficulties can be avoided by measuring the transmission

cpefficient. Small changes in the transmission coefficient can be measured

accurately,* with amost no spurious effects from causes such as diffraction

and movement of the plasma interfaces. The transmission coefficient is more

sensitive to the total number of electrons along the propagation path than to

local, gradients of electron density.

The foregoing arguments present sufficient reason. for measuring the

transmission coefficient rather than the reflection coefficient of a plane slab

whenever this is possible. It remains to be shown that the interpretation of

the measured transmission coefficient in terms of C) and C2 is also much
p c

more straightforward in view of the good approximations that can be made to

the rigorous Expression (1). This in itself is a sufficiently good reason for

using a measurement of the transmission coefficient rather than the reflection

coefficient to determine the plasma frequency and collision frequency in a

plasma slab.

* For example, for a plasma ten wavelengths thick, n A 0. 001 can be reliably
measured by the -transmission technique.(7c) nc

6
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NEED FOR TRANSMISSION COEFFICIENT APPROXIMATION

In principle, Expression (1) for the transmission coefficient may also be

written

T = T(Cp, V d) ej 6 (C2p, rc' d) (3)

where T (2 p, c' d) and 6 (n p, Vc , d) are transcendental functions of the

plasma slab properties as indicated.

If the transmission coefficient is measured by a substitution method, ( 2)

and if A and A are the amplitudes of the transmitted wave before and after

the insertion of the slab, respectively, and if (P is the phase shift of the

transmitted wave caused by the insertion of the slab in the beam, then

A ej J (3a)
0

From Expressions (3) and (3a) it can be seen that

yA = -r (np, 7.c, d) (4)

0
= e1 (c , ac , d)

(p= 8 (np ' c' d) (5)

In principle, these equations may be inverted! to give 0 and 0 c in termsp
of A/A , p, and d. However, because of the complexity of r (Cip, ()c, d) and
6 (C)p, 1 c' d) in this case, the inversion cannot be carried out explicitly.

In some situations it is practical to use a graphical solution.. T can be

computed rigorously from Expression (1) and 1" and 6 can be plotted as

functions of C) and n for various values of d. The measured values arep c
located on the appropriate graph and: the corresponding values of -0 and c

are then read off. ( 9 , i2)

7
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If data reduction requires the use of digital computers, the solution for

(2 and flc in terms of the measurable quantities has to be obtained through
p

transcendental equations, requiring an iterative approach which, for a large

number of data points, proves to be prohibitive in time and cost. An alternative
procedure is then required; one such procedure, the use of manageable

approximate formulas which can be easily inverted to give f' and 2'p c
explicitly, will now be pursued.

8
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APPROXIMATIONS TO THE TRANSMI SSION COEFFICIENTr
In all of the transmission coefficient approximations referred to in the

j literature(l, 2,4, 5 )it was assumed (usually implicitly) that propagation through

the plasma slab is unaffected by the presence of the boundaries. In addition to

this assumption, the propagation constant of the plasma medium was then

independently approximated. Musal ( 7 ) used only an approximate form for

the propagation constant in the exact expression for the transmission coefficient,

which includes the effect of the boundaries, and was able to derive a useful

approximate transmission coefficient. In contrast, Zivanovic (6)used the exact

expression for the propagation constant and only neglected the effects of the

boundaries, from which a different approximate transmission coefficient Was

obtained. It was found that this last approximation is more widely applicable

than all the earlier ones, since they can be derived from it as a series of

successively poorer approximations.

In all the approaches discussed in this report, it is the transmission

jcoefficient that is approximated. The approximate transmission coefficient is

then inverted to explicitly express f' and fV' in terms of the amplitude and
p c

phase angle of the measured transmission coefficient. It is important to

recognize that a given approximation in the transmission coefficient can cause

an error in C2' and WV which cannot be explicitly predicted in analytic
p c

form. It is therefore necessary to examine the accuracy of the expressions

for 02' and' 0' numerically. This can be done as follows. Values of fp
p c

and d for a plasma slab are assigned and the exact transmission coefficientfc'
is calculated from Expression (1).. Using this value for the transmission coefficient,

(2' and C1' are then ,calculated from the inverted approximate expressions. It
p c

is then possible to compare 0' and V I with C) and 12c and to see directly

the error caused by the approximate expressions,
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There are a number of ways in which the error caused by the approximate

,expressions may be shown graphically. In this report, two methods are used.

First, the relative errors in both C' and n ' are plotted as functions ofp c
0' and ( c  The choice of 0p and c  (rather than C2 and n ) as the

p c p cp
independent variables was made because 1' and 0 ' are the quantities that

are calculated and hence available, whereas 0 and 0 c are not known inp c
the actual measurement situation. Second, a mapping of the 0 - 0 plane

p c
into the )' - ' plane is given. These charts can be used to determine

p c
the exact values of t2 and c when the approximate values of n' and (c!

pp c
are known. These charts illustrate very lucidly, by the deviation of the

n- (c lines from the a' - c' grid, the parameter regions in which the

approximate values are in large error. Both types of error representation are

given for each approximation (non-reflecting boundary, underdense plasma,

and low-loss plasma) for 17' and nf' in the range from zero to 0.95 and fori P c
d/Xv in the range from one to ten in steps of one.

THE NONREFLECTIVE BOUNDARY APPROXIMATION (NRBA)

After some rearrangement, Expression (1) may be written in the form

exp [jk vd(I-Np)]
T =F (6)

where

(1 -j c) 2

F= I f 4 -exp(-2vd)1 (6a)

The factor F is due to the multiple reflections from the slab boundaries.

10
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Defining quantities a and b (not to be confused with the attenuation andf phase constants op and p of the plasma!) as
p p

Xv In A 1 A (7)

o V 0

b- P (8)
v

the .measured transmission coefficient given in Expression (3) can be written

as

T = exp jkvd(-a+jbi (9)

Equating Expressions (9) and (6) results in

exp,[kvd (-a + ibJ I= - exp [jkvd (1N)] (10)
1+

It is seen from (6a) that, for small F can be neglected compared with
unity due to the fn factor. When nq is close to unity the transmission

p p
coefficient depends exponentially on Q p, and neglecting F would, be compen-

sated by only a slight change of -p in the exponential. Zivanovic,(6 ) sets

F = 0 and obtains an approximate transmission coefficient, given by

T' exp 1iJk vd(1-N'p (1

Equation (10) then reduces (with F 0) to the form

n n121/2
-a+jb = j (1 -N') j ( 1 C. (12)

gP c

and, after some manipulation, this can be inverted to+ give

2 2 (1-b)2

S= -b+2a1 - 2 (13)

11
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= b (14)cI a2
1I-1 b+i u

Here a and b and consequently 0 ' and 0' can be easily calculated fromp c
the directly measured quantities Ao, A, and o using Equations (7), (8), (13)
and (14). The values of C? and c as functions of 0 ' and Q' are pre-

p c p C
sented in Figures 1 to 10 and the relative errors incurred by this approximation

are shown in Figures 11 to 30. It can be seen that the agreement between the

exact and approximate values is excellent for a wide range of plasma frequency

( 0 fP _ 0. 95), collision frequency (0 -n c :_ 0.95) and thickness of thepc
medium ( Av < d _<10 )d ).VV

THE UNDERDENSE PLASMA APPROXIMATION (UDPA)

Musal(7)has shown that when

< < 1 (15)

then y' can be written as
n,2

p1
p =k v (1 1j Hi (16)

c

Substituting Expression (16) into Expression (1) and making use of approxima-

tion (15) reduces the expression for T to

I1 (1 )
T' =exp [kV d  - + ,2

Equating, Expressions (17) and (9), one gets

ft ()1 2'
1 C pa

1 + ' 2,

12
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02
I p = b (19)

r I 1 + 0'
c

where again a and b are defined by (7) and (8) in terms of the measured

quantities A0 , A and 0.

- Equations (18) and (19) can be solved for n' and 0' to give
p c

2
2 a

0'2 2b + 2- -  (20)

17c a -(21)

Expressions (20) and (21) can :be obtained from the more accurate

Expressions (13) and (14) by retaining only terms of the first order in a and

b in a power series expansion. This Is consistent with. the initial approximation

(15) which implicitly neglects higher-order terms.I
The graphs representing (0 and 0 for the: underdense approximnation

p c
as functions of 0'p and 0' are given in Figures 31 to 40. The errors

incurred in both C' and ,0 are given in Figures 41 to 60. The approxima-p C

tion is excellent within the limits of Assumption (15); the error increases when

0' approaches unity. As can be seen from the graphs, this approximation is

very good even for very large values of collision frequency.

Goldstein(5 ) has derived Equations (18) and (19) by simply approximating

I/ and neglecting multiple reflections from the beginning.

THE LOW-LOSS PLASMA APPROXIMATION (LLPA)

.(2) 2Whitmer, neglecting multiple reflections and assuming that A << 1 and

4 1<<, has derived the following approximation for Y,

13
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2 1//-
__________1/_ 2 1- (22)

Substitution of this into Expression (11) for the reflectionless transmission

coefficient results in

T' = exp kvd V 2 2 +,p2 4 (23)

Comparison of Expression (23) with the measured transmission coefficient

as-given in Expression (9) gives

1 -p 2  = a (24)

(1-0rn

p1- (1 - t '2)l1/2 = b (25)

which can be readily inverted to yield

2= 2b-b 2  
(26)

p

a, ,a I -b (27)
c b 1- I(7

Comparing these to Expressions (13) and (14), one inconsistency is noted.

Whitmer's approximation is equivalent to neglecting the second order of a and

hence Expression -(27) is consistent with (14). 'However, the third term in
2Expression (13) contains a dominant factor 2 a /b., which is 1not necessarily of

smaller order than a but has been neglected in Expression (26). Computations

of f0' and n' based on Expressions (26) and (27) bear out the suggestion thatp c
the third term in Expression (13) should not have been neglected. The results are

shown in Figures 61 to 70. and the errors in r, and 1)€ arelgiven in Figures
pc

71 to 90. There is no doubt that large errors arise when n c is not close to zero.

These could be reduced considerably by making a more consistent approximation,

as indicated above.

14
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Wharton(la)has used a similar approximation, except that in his expression
2for P he has retained a term in n as a part of a series expansion. This

p C
;would lead to the presence of a third term in Expression (26) similar to that in

Expression (13). However, because of the series expansion, the conversion of

Wharton's a and p to f' and f0' cannot be carried out.
p p p c

THE LOSSLESS PLASMA APPROXIMATION

With O = 0, Equation (13) becomes

2)20' = 2b - b2  (28)

which is equal to Whitmer's Expression (26). Equation (28) (in a slightly

different form) has been widely used in microwave interferometry.(1, 4) This

is just a special case of both non-reflective boundaries and low-loss plasma

approximations.

The values of 0' froin Equation (28) can be obtained either from thep "

charts representing the nonreflective boundary approximation or the low-loss

approximation for the special case of Oc = 0.

15/1-6
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COMPARISON OF APPROXIMATIONSI
There is little doubt that the new approximation presented here leads to

values of 0p and (' that agree with the exact values well within the errorp c

limits normally encountered in microwave diagnostic experiments. The

expressions for n ' and D' are simple enough that they can be incorporatedp c
readily into any digital-computing program. Thus, from the point of view of

interpreting experimental data, this approximation satisfies all practical

requirements.

Since the other approximations can be derived from this approximation by

neglecting the higher order terms in it, they can be no better than it. However,

it is of interest to compare them numerically; this can be done most conveniently

by plotting constant-error contours in the (2 - t2 plane for both the plasmaSp c

frequency and the collision frequency for the various approximations. Percentage-

error contours are shown in Figures 91 to 106. Referring to Figures 91 thru 98,
which show the one-percent-error contours, it can be seen that the new approxi-

mation covers most of the useful range of n p and 0 c. The lossless approxi-

mation (Wharton) includes most of the (2 axis ( -2 = 0), whereas the low-loss
p c

approximation (Whit mer)extends this coverage into a finite strip adjacent to the
ap axi2s (aC-< < 1). On the other hand, the underdense approximation (Musal)

covers a strip adjacent to: the nc axis (V <--1). In this sense, the under-
C p

dense approximation and the low-loss approximation are complementary. Similar

behavior prevails for other fixed percentage-error contours, as shown in the

remaining figures.

I
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TABLE I

SUMMARY OF FIGURES

I; pQand 0c pa , c ,
v s vs C vs V

0' and Sl' c
p c

Approximation Approximation Aproximation
____NRBA UDPA LLPA NRBA UDPA LLPA NRBA UDPA LLPA

d= 1 1 31 61 11 41 71 21 51 81

d = 2 2 32 62 12 42 72 22 52 82

d= 3 3 33 63 13 43 73 23 53 83

d = 4 4 34 64 14 44 74 24 54 84

d = 5 5 35 65 15 45 75 25 55 85

d = 6 6 36 66 16 46 76 26 56 86

d = 7 7 37 67 17 47 77 27 57 87

d = 8 8 38 68 18 48 78 28 58 88

d= 9 9 39 69 19 49 79 29 59 89

d =10 10 40 70 20 50 80 30 60 90

ERROR ERROR NOTE
<1% <8%
p cNUMBERS REFER

S c C c CTO FIGURES;

d 1 91 92 99 100L PAGE NUMBERS
ARE SAME AS

d= 3 93 94 101 102 FIGURE NUMBERS

d= 5 95 96 103 104

d=10 97 98 105 106

I
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Figure 1 Exact Values,as Functions of the Calculated Values of the Normalized
Plasma and Collision Frequencies for the Nonreflective Boundary
Approximation (NRBA) , for a Value of the Normalized Thickness of,
the Plasma Layer di 1.
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Figure 2 Exact Values,as Functions of the Calculated Values, of the Normalized
Pl 'asma and Collision Frequencies for the Nonreflective Boundary
Approximation (NRBA)-, for a ,Value of the Normalized Thickness of
the Plasma Layer d 2
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Figure 3 lExact Values,as Functions of the Calculated Values, of the Normalized
Plasma and Collision Frequencies for the Nonreflective Boundary
Approximation (NRBA), for a Value of the Normalized Thickness of

the Plasma Layerd 3
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Figure 6 Exact Vaiuesas Functions of the Calculated Valuesof the Normalize6d
Plasma and Collision Frequencies for the Nonreflective Boundary
Approximation (NRBA), for a Value of the Normalized Thickness of
the Plasma Layer d 6
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Figure 8 Exact Valuesas Functions of the Calculated Values~of the Normalized
Plasma and Collision Frequencies for the Nonreflective Boundary
Approximation:(NRBA), for a Value of the Normalized Tickness of
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Figure 10 Exact Values,as Functions of the Calculated Values,of the Normalized
Plasma and Collision Frequencies for the Nonreflective Boundary
Approximation (NRBA)., for a Value of the Normalized Thickness of
the Plasma Layer d =10
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Figure 12 Percentage Error in Normalized Plasma Frequency for the Non-
reflective Boundary Approximation (NUBA) as a Function of
Measured Plasma Frequency for Various Values of Measured
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Figure 14 Percentage Error in Normalized Plasma Frequency for the Non-
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Collision Frequency, for a Value otthe Normalized Thickness of
TMs Plasma Layer d 4

F-14



ONG DEFENSE IRES9ARCH LASORATORIES * GNERAL MOTORS CORPORATION,

TR63-217G

I NONUNZCTU4O BOUNDARY AWIOXMATION

10dm

30.05

.0 0. 0. 0. 0. 0. OA 07 0- aq l

Ir1



*M DECFENSEt RESE9ARCH LASV@R A T 0IS0 011 GENERA-L MQ?@$ A;@RPQRATIOW

TR63-211G

NNULICTHS IOMY APPIOXUAT"O
0 d86

8 0.05

a 01 02 03 0.4 0.5 OA 0t) 0.9 0.9 to

Iure 16 Percentage Error in Normalized Plasma Frequency for the Non-
reflective Boundary Approximation (NRBA) as a Function of
Measured Plasma Frequency for Various Values of Measured
Collision Frequency, for a Value ol the Normauls@4 Thickness 01
Soe Plasma layer d =6



00 0M It0 D WENE. ARaESEA RCH LAU@R1AT0RSES (0 GENERAL MOTORS CORPORATOWN

T-ROS-217lQ

NOWRECTG UOUNOMY APMXViAAfON

I ' - - ---- ---- ---- - -

I - ---up

5------

lii - - - - - - - - -- - - -F

.03 0. 64 0. 0. OA 0. 0. -. to --

A4

Sigum 17, Percentage Error In Normalized Plasma Frequency for the Non-

reflective Boundary Approximation (NRBA) as a Function of
Measured Plasma Frequency for Various Values of Measured
Collsion Frequecy,. for a Valug of the Nornpaiised ickness ofI'the.Pasma 144r 4 1.7



SMDFNA- *EKSKARCH LAUDEATORSIse 61* GE AL MO@V111 CORPORATION-

T035-217G

NOWIFECW4O BOUNDARY AMOM(ATION

a,;;- 03 OA 0.5 OA 0)7 0.6 0.9

Figure 18' Percentage Error in Normalized Plasma Frequency for the Non-
reflective Boundary Approximation (NEBA) as a Function of
Measured Plasma Frequency for Vauious Values of Mesured
Collision Frquency, for a Value ot the Nornuilsed Thickaes of
the Plasma Layer duO



01

all, NSR~S~NLU RA@IS0 GIEA OOS OPRTO

B . . . 04 05a. I
ilniuell ecnaeErri oraie lsaFeunyfrteNn

-- - - - - -- - - - -



46 'SI 9W 8,41-C .A 9 AT 614 9 9 AL-4T -ON V 0-M A TJ0

TMAS-S1G

5,5

0 m1

C olio Frqen fo a ah 4-- - -- -Nrw-4 -h~,90 of

Figure 2 Pcena Error in Nomlzd lsaFeqec orteNn



L ITR63-2170-

VIP,

r 4Z 02

.4
II W

z

I _ -4-

07-2



j ~~~~T63-317G 0 __

__ 0

:;Ooo

io00



S S16 gpsusgEASnH LA**nAT.SSIS* @ *SMSSAL **t**pg COOP@SATYIp

ITR63 -2170

1~14

U - - - S.

0.60

Id d



*M*P0'*01 WRUIKAAm0 LASORATORI&P G8*NUERAL MOTORS CORPOUATION

TW-217

o E
Ii4 IIII1i0

2. 0d

1-14



LN **'1 EFS N G t R ACIOI LAM@RAT@liES * GNERAL. MOTORIs CORPORATIQ

Iii
TR63-3og

0~0I----------
I - .00

IO IV~U

------------------------------------------------------------------- 4

Gr4 C)'Ir Ov-- - -- - - 1 It

[ - - - 0

I: ii ~ Ik

I I

QQ

4 F-25



6,M DWFR"SE 1116111A,09" LAS@UNAT@RI3S6 * *UN8EAL M@!O0 C@RPSS,4ATI@N'

TR63-2,17G

0):

a rA
'0D

-~~~c --D-

0 ~ 1;::
ir

0C

Q---9 - -0-0--0

-j

1-"26



am DEFElNSE RESEARCH LASO-RATO0IE S * GENERAL MOTOR0S CORPORATION

~~~~~~~~~~T RA-------------------I63-217G

Cd

o-E

2 orz44

M w

44 N Id Cg

Ii 4

IIf

~ 1; F-27



404 DEFENSE RESEA.RC:H LAW@RAT@RIUS *SEgNUA-L MOTORS0 CORPOR0-ATIONA

49

a I

z14 Cd.2~~~~ - -- - - - -

Uc

V C

3 4 cd .-

C3'

0 ,2



o OM SEPNSE EE9SACH LAWe ATORIES19 * *NAL NOT~nh, d@RP@EATION

TR63-2170

00 =1 t
-- >

Img

--------------------------------------------------------------

- -0

o--b

A PC

00

0 .44I~ ~ ~ ~ ~~$ -------------
- - -- - - - - cu

aINr
Ia

I 3Vd

Fi2



OW 0:FlkNSE RESEARCH" LAM@UAT@WIES 69GNERAIL M@?*SS-0 0@SP@RIAYOO

j T"63-2 170

_$ 0

12 0

- - - - -- - - - - - - - - --

-041<

- 0-0

- - -- lid
- - C

owvq

-oo I, 0.

F-.sV



TPS3-217G

UNDERDENSE APIOXHATION
@ du

O~d j 0

'~oV~e'1
:(3 f3. F .000,0

.011

* QIt

-~e d- ---



IDSPAMSO' M-96KARCH LAWORATOnIff'S *a-N:anAL *VTORS COINF-sIA&TIVA

1MM-217G

UNDODENSE APPROXNATION
2

1.0

C;'
IL aQ Swe

44- Id (3 35io.9
-7-7-

ol
oo

o
Jo oooooo

0.6

i o -of

-oo o- I
ob I

I o ow

1 z
b2

0.2 0.3 OA as OY OA at to

Figure 32 Exact Values, as Functions of the Calculated Values, of the NormaLtzoo
Plasma and Collision Frequencies for the Underdenme, Pigs= Affrod-
mation (UDPA), JW & V'ahW aj L&OMriodised Thickness ad Me ftaw
layer d- 2



G;M WX F 5 :9'0 *RAPIC4 LAuOU0-ATOmIg-S _ GUNSCL M@TS C@UP@URATI@-N

UNDRENSE APPIOXIMATIONd o3

I id
ic 0-C 01 0 2 04 af~0. m0

?tgur Exat Vales, s FCtin3fteCluae aus fteNraie

ds-

44



010 11,20N89 R66RAOR6 LR3@PRAT@RI3RS 9 *SUUA. MOTOR& 4*@UPSRAYiOM

UNDODENSE APPROXIMATION

11 I

0.3

0.6' 0. . OS O

t34



ON DFENE REEARH LAUONATO-IS GEERA h~TRG COMPOATO

UNDERDENSE APPROXNiATION

I~ 5

I4 oo

j.j

00*

4---

0. _jI

03 I
~- "'

0.2 01 0.4 O.S OA 0.7 OA0.E
Figurem 35 Exact Values, as Functions of the Calculated Values, of the Normalized

Plasma and Collision Frequencies for the Underdense Plasma Approxi-
mation -(UDPA), for a Value of te Normalized Thickness of the Plasma

v Mayer d 5

iiil -35,



GMDWFENSEf RESEARCH LAeO-RATRiE'S (D GENERAL M4OTORSL CORPOO'RATION

UNDERDENSE APPROXNAIION

d d

0~0.

oop

F-a.



SM~~~~ TEES 0EEAC MAO ARE 9 GENERAL MOTORS CORPORATI0O

TR63-4170

C UN EDENS A PROX A TON

II
!:a 7.7.

IIJo

0.6

I~~4 - I 44-1.

V030203 0.4 05 0OA 07 0.3 0 .9 1 . 0D

Figure 37 Exact Values, as Functions of the Calculated Values, of the Normalized
Plasma and Collision Frequencies for the Underdese Plasma Approui-11 moion (UDPA), for a Value of Use Normalized Ittckun of the Plasma

II:rd



,M, OUrfENSE -RESARC-H 'LABORATORIES IS GENERAL MOTORS CORPORATION

UNDODENSE APPROXFAATION

d 110

0.I2

0.9 0.

0.2

-I

F-SOr



ag GM .1 DE M-NSa RESEARCH LASORATONIES GENERAL MOTORS CORPORATION

TR63-217G

I UNOURDENSE APPR0XNAATION

L~o

oI __o

I

U of

FIpmr 39 Exact Values, as Functions of the Calculated Values, of the Normalized
Plasma arnd Collision Frequencies, for the Underciense Plasma Approxi-
mation (UDPA), for a Value of the Normalized Thickness of the Pasm
ILyer d 9



W-M DEFEN:SE RESEARCH" L*IMRAT ORIE'S OUGNERAL MOTrORs CORPORATION

UNDERDMNSE APPROXNATION
d 10

C3-C

0.67

S 0.1 0.2 0.2 0.4 0.5 0.6 0. 0.3 6. 1.0

Figure 40 Exact Values, as Functions of the Calculated Values, of the Normalized
Plasma and Colision Frequencies for the Underdense Plasma Approxi-
mation (UDPA), for a Valu. of the Normalized Thickness of the Plasma
layer d,- 10

F'-40



fj GM- DEFENWSE1 RESARCH LAUOATORIES~j 6 GEINERAL MWOTORS1 CORP-ORATIN,

TR63!-217G

0.0- 5 - '0.-

I I - -- - - -- - -- - - -- - -

0* 03 0.2 0.2 0.4 0.5 OA 0.7 0.6 0.9 la

Figue 4 PecenageError in Normalized Plasma Frequency for the Under-
dense Plasma Approximation (UDPA) as a Function of Measured
Plasma Frequency for Various Values of Measured Collision Frequency,
for a Value of the Normaizsed Ihickness of the Plasma Layer d I

[ 1-41



KM 359NS RSARWCN LADOR*A'TORIES-* 4 GENERAL MOCTORS0 CORPORA,#TION

TRO3-21TG

UNDERDENSE APPROXIMATION
d d2

IC---------------------------------------O-01

5- 0Ocuo 1s

010e

I------------------------------------

~~I0.0

-0A 0.1 01 0.3 GA 6.3 0.6 0.7 . 0.9 Ih

Figure 42, Percentage Error in Normalized Plasma Frequency for the Underdense
Plasma Approximation (UDPA) as a Function of Measured Plasma
Frequency for Various Values of Measured Collision Frequency,
for a Value ol the Normalized Thkickness of the Plasma Layer d a2

F-42



G* PsVES 9 1RESEARCH LAB@RAT@RIES (1, GKNERAL MOT@Rp CORPORAIO

TIR63-217G

UNOERDENSE APPIOXHATION

i t------------------------------------------ 3

I - --- -- --- --- -[1-
IO

I.:W M)-I ~Op

0 01

0.0 03 0.2 0.3 CA 0.3 Oh 07 0.6 0.9 1A

IFigure 43, Percentage Error in Normalized Plasma Frequency for the Underdense
Plasma Approximation (UDPA) as a Function of Measured Plasma
Frequency for Various Values of Measured Collision Frequency,
for a Value Of the Normalizedl Thickness of the Plasm Layer d -3

I FP-43



UNDERDENSE AM~OXNAtION

-1W1

6 3 042 0.3 0.4 01 0. 07 0CA 0.9 ID,

11pmr 44 Percentage Error in Normalized Plasma Frequency for the Under-
- - -- dense Plasma Approximation (UDPA) as a Function of Measured

Plasma Frequency for Various Values of Measured Collision Frequency,,
for a Value of the Normalized Thickness of the Plasma Layer d44

7.44



SM DUENSESESEUSH ASOR T9UIS* SNESA M@T S E A@UOXIATIOWito
0.0

I-p
~;. )~0;

UNfOES Now-,~1I

j LA- - -

0L - -O 0 A t

PecnaeEro nNrmlzdPasaFeunc o h Udres

PlsaApoiain11A s ucino esrdPam
Frqunc for Vaiu-auso esre olso rqefo "o 9Xmat"Tikeso tePam Ie



ON SEFENOX W198EAPOM LA8OUAODRSES * GeNfERAL MOTORS0 CO-RPO:WATIONM

TRSB-217G

UNOERDENSE APROXF#ATION

1-0-7

#4



GM EFES5RKSCARCA4 LAbORATORISS * GENERAL MOTOR& C@RPORATION

fu TR63-217G

UNDEROINSE AP"bOXNATON
d7

I - - ---- *u 0605-

-~~~09 - - - 0 4

~ I - - /--

0 s-.- ----- - J4-

Snl

op17T]

ro a Vau of Nomlie Thcns of th ls

~ I -7-7



SN4 OPUNal WwSUAagm LAMs@AT~maoxe SINNOAL MOTOReS compevAirovst.

TROS-2lYG

W4OIRDENSE APM@XNAATi#4

p,1~ 005

9 0.

- -

00"A 0.2 0. 0.3 OA 0.0 ah.? 0.0 '0.9 1

Figure 40 Percentage Error in Normalized Plasma Frequency for the Underdense
Plasma Approximation (UDPA) as a Function of Measured Plasma
Frequency for Various Values of Measured Collision Frequency,
5br a Valuec of Normalized Thickness og Ua Plasma Layer d .8



*#AM DEFNSEI RESE361ARCH LASORATroRI 14 *EWER19AL MOTORS CORPORATION

"R63-2170

UNDERDENSE APPROXNATON

DC*0.05

"00
r - - - - - - - - - - - - - - -

U - ---- ---

41 oa0. 0 .67 as 0.9 to

Figure Percentage Error in Normalized Plasma Frequency for the Underdense,
Plasma Approximation (UDPA) as a Function of Measured Plasma

~ [ requncyfar arius Vt..of Masued Collision Frequency.
hrawbs WsrA~INOTh~kamwal d Plumalower.9

IP-40



4" DEFENSE1 MRUSAMCN LA0ORAT'ORIES 0 SWEDAL MOTORS C*RPORlO

TEGS-217G,

UNDEROENSE AMOIMATION

00.05. <±'w.

I -W

P -0

0.0a 01 02 0.3 OA 0.5 OA 07 0.1 0.9 is

Figare 50 Percentage Error in Normalized Plasma Frequency for the Underdense
Plasma Approximation (UDPA) as a Function of Measured Plasma
Frequency for Various Values of Measured Collision frequency,

for Vaue 1 te Nr~alus &ninsof tePlasma LAyer d a 10

foF -lmo d omlie uc"oh



P tl 6W0I ** *EPNS AUE ,SC; L-A (90 RA TOInSI It *UNES1Al. MOTORnS COUPoOnATION

TR63-2 17G

- 06

Uo

dv I or v~

oz

II
I I C4

:1~
a .0

130o
111a

v-s



GMD901gNOR 110S9ACK LAB@RAT@EIXG * SEgnSAL 0MOTOING COURPORATION

00

__0 -4
I - 0

0-

04

0

ifi
00 00, f

- 000



OM DEPErNU9R9*S9EAECH LAWU@RAT@RIKS * GNBRAL MOTORS CORPORATION

TR63-217G

-
.40C 0

-

0-0

oc

I --

.4 54

10

0 0T4$
-~; 

TM.-~

IC

U, c-53



OM DEFEMOR RESEARCH LAUORATORISiS * GNKRAL MOTORS CORP-ORATION

TR863-21,7G

CU Q

a.

0s

gasOC

d

C: o

olUO.

fdl!

iv0

- -~~6 pd~~ ~

0

- - - - goa

F- 54



'ONG DEFENSE RESE9ARCH LASDORATORIES WKGNERAL MOTORS CORPORATION

TR63- 217G

H ol

00

c~Cd

- 5"o

44

4d - d -D.

c co W

d 0

0000
'00-0oIL

I F-55



SM DFENS REEARC LASRATRIES* GNER'AL MOTORS CORPORnATIO

00

CC

s-4

__ 10

01

040

IWO

AZ71:L



GM EFNS REEACHLA2U@RAT@RIE*S OGNERnAL MOTORS CORPORATUON

TR63-217G

iid
d* I

14Iid
v 0

~r

r _ d

I d d

0

.144

0 -67~q.



SD9F9NS9 PRESANC14 LAW@RAI@RSES@ OKEPSL *T*S C@RPt&P@

TR63-217G

0 -

ox .o

.2

-- do

3j0d



ON D8F9OI*, W~IAmeU L A 1610AI ait **NSStAL, W@Y*S CORPOSnATIOW

TR63-2170

0 -

0 -

C4

d - 0

- - I



SM PPUNS iRESAmeN 4*OO#AT@~wI5S 0190RAI. MWt@*O* C@RP@RAIOt4

L ~ ~~~TR63421G z zz~ z

II

F 3C3
0

_ d

v< Q



Ow * v egwsG 0UURIA06# .A*4T3J *swswAA. NO@Y@CRS P16 T

k 
TDS-211G

A, LOW LOSS APPROXIMATION

00

I F.
00

-X I

0-.e-,O or -. 0 e-00

44-I

A 
0 

a

......-.. - - 4 4

0 *AC _ 0.1 0.3 a4 0. 6 0OA O3 O9 1,

Aluu 6A xact values, as Functions of the Calculated Values, of the Normalized
Plasma and Collision Frequencies for the Low-Loss Plasma Approxi-

U...o (W- o amo h WnatdTikeso o Pa1[Ivr



0*O' GA$WS A 040 01 LA*T0U@ a 46060AL KOTAOS c1*0001ATION

LOW LOSS APPROXIATION

* t-- V4 40 o - --

'410
-- 4+

4*0 0o



so 64#.*09R R**ae 64*.AT*Rt;* *#86UAW&I. UOT* C@ORPORATI.U

LOW LOSS APPOXIMATION

1.0

I Th~i 1~'T~0

5 44u9a

e.1os h 0 0. 0. 1

U as Functions of the CalculateVausofteNrlid
Fr--4sfr h o-osPlsaApoi

Va~ ~ he ~orsllgdThtusu oftheRa
4- '11110

'/ 0 - i

KA;



All

0~

*M*FES mSA~MLS@A@SU @SNCA ~tS CS@UT,

jii 3  - ~~~ ~~1-O 0 1T O OSAPIXjI

(i 
t 

i ~ %~

SC1.

-- O

0.e . i 7 0 * I

716e. g~ Eact alus, s Fnctins f te ClcultedValesof te Nrmaize

Figwo64Plasma Vandes Cols FcionsgD o he CaheuLateLaulsmaf h Normali-e
mation (LLPA), 1ow *'a atu do h. Xrmflsd U69kowms wtO.t~m
LAyer d 4



II G PEP N RESARCH LADWRAOR1E4 OXGNERAL MOTORS COIPORATION

TRO3-;,17G

LOW LOSS APPROXIMATION

d 5

OIL

0I0

:1 0
- -- - 0"

I -1 1 O000

0. . .2 0 4 0. h 07 . .

-Af

4-



SM DE9FK0NSE RES#EARCH LA§*RAT@RIES * G ~nRAL. MOTORIS CORPORATION

LOW LOSS APPROXNATION

Ar0 &vd t, 6'4

f10 0

0.1- ~ - ----

I 00.

.2- 
0.

0* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0. 0.9 1.0

FigreW Exact Values, as Functions of the Calculated Values, of the Normalized
Plasm an olso rquencies for the Low-Loss Plasmam An olsinFopproxi-
mation (LLPA), for a Value of the NormaalieThcesoftePaa
Layer d a6



GM DFENS RESARCHLAS@AT@RES *SENRAL MOTOWRS CORPORATION

'TR63-2-117

p LOW LOSS APPROXIMATION

d 0 0 0 T

I

0.6 
-II _

--00

'F 0.1~

- - - - . 7

I o.~ F-47

- -04__ *



ONDFES RESEARCH L&SOMAT64RIES * GNERtAL, MOTORS COrORATION

TR63-21TG

LOW LOSS APPROXMATION

0
1 -C ~ 0 0 ro~

3T ~ .

:C3 .0

.9..

01 *'0

ci - %

10,10

.0.6__ -4

4-41

- ~-- -- -- -

0.0.

Figure 68Exact Values, as Functions of the Calculated Values, of the Normalized
Plasma and Collision Frequencies for the Low-Loss Plasma Approxi-
mation (LLPA), for a. Value of the Normalized 7Tickness of tePlasma
Lar dm8



MDENE EARHL.A11@RATORIES * GENE9RAL MOTORS CO0E1P10ItAT1ItN

LOW LOSS APPROXIMATION

I ~ ~~ NIP 00(

I0' - .1

I A~ w 02 0 .0.6 0 .3 0.9

[I,
F~gue 6 Exct alue, a Fuctins f th CacultedVales, f te Nrmaize

Plasa ad ClliionFreueniesfortheLowLos PlsmaApvooo-

FiW969 Eato LP o Value ucin of the Cormalited Vaicues of the oarmae
7 P~~~lasmed CliinFeunce o h o-os lsaApo9E ainILAfraVle fte o;aie hcns.o h ls

LAYl d, 9



GMO SEENE essAgg.: LA6ORATORIES9 * GENERAL M,*t@U5 COUP@UATI@N

LOW LOSS APPIOXNMATION

670.

0.4~S IC - .. 1 l_

I L

- - - -- - - - - - - - - -

-00
OS 01 - 2 0. @4 .5 0~ 07 0.S09 1.

0.60



SM DEFENSE WESAIRCH LAID'OAT@SUIS (D SENSAL. #AQT@R5- C@,RP@EATI4N

TR63-2170

LOW LOIS AM6OXNATC#4

U --

op --

i-.
0 -- - - -T

I .-O~r.5
I IQ

- -------- 7

400LA-- 0.1 0.3 0. 0. OA 0 ast

Figure----------------rrori--Norm-iz---Plasa-Fre--ecy-for.th Low-Los

Aprxmto - A as a Fucto of -esue Plsm Frqecfo Vaiu auso esrdCliinFeuny o awo
- ------------ OfMe _U A ~yr '



TRU-017G

iOW UWAINONMATIN

op-a,-- -- - -

B, -

0. j1 -0. -- -Y * 1

LzuePeenaeErri omlzd lsaFeunyfrte10WLs
Aprxmto (LP as a- Fucino esrdPam rqec

fo.5iw auso eaue olso rquny oaVlea

Fiur ~ eretae ori NormalizdT6 ua e Plasm Frec fo th2owLs

F-72-



SM 0EF6,I * 44A N LASSSA0TORIES 41111116IAL MOTORS CORPORATION

if ~tWB-21'IO

LOW LOSS AMOXVATION

lap

o0.

40"------------------ - - - - -

0.1 03 0.4 0.- 16 -7 O- 0-9 I

Pecntg Erro in Nomlie Plsm Frqunc for th Low - - -Loss

Appoxmaio (LPA a aFucton f eaurd lasa reuecy

f ~ ~ fo Vaiu Vale of Mesue CotinFeuny o -o

.1--------------------------------------------------e--d



GM DFENE RSEACH AS@AT*GES* SNERAL M@Y@RS C@RW@RATI@N

low LU, AFROX~IATI0N

4 - - -dm

0. - -

-. 2

-1 - -3 0. 0. OA 0. A - 08 0.I

Fiur Pecntg Ero in Nomlie Plsm Frqec fo the Low-Lose

Figur Pe.rcentaed rror n Nofalied Plasmayreqec do th4owLs

-1 ~ ~F14 .1



GMA *VSPOSO 10USR1AOIC0 LADORWATORIES6 * *SNEAL MO0TORS COIRPORAtION

TROW W-2170ONAI

I S-

IUP

E0-177--

4%----------- OA -0-5 -O - O- U

Figue-7--Pr-e---eErrr-i Nrlie Plsm Frqec-oteLwLs
'Appoximt-- --PA as a-ucino-esre lsn'rqec

Vlzfo V5aPercentae o inaNormaied Platsma Frequency, for, h LowLuoss

the Normalixed Tthidineas ol Ohe PWlaye r d *5



SOn OPPNSK RSEARCH LABOURAT0SI'S 0 * 'WRAL UO@@ 6 P1AVTON'

.T-2.."r

a, --

W. ,V4

1d 016

.0.,

40 _ -

0 0.1 0.2 0.3 0.4 0.5 OA 07 0.3 0.9 1.0

,Fu It Percentage Error in Normalized Plasma Frequency for the Low-Los.
Approximation (LLPA) as a Function of Measured Plasma Frequency

I for Various Values of Measured Collision Frequency, for a Waho of
the Norm#alse Thkfas ol On Plasma Layer d 0

I.....



GO DEFENSE RZSKAICH L A90@aATG18E01 GE1NERAL MOTORG cOORPOEATI@N

TR83-217G

t4,

WWLSSAMXMM

II - ---- - -- ---- --S

Opl
iiS--------------------------- - --

062-

I - - - - _- -0 -

0 0 0.2 0.2 0.4 0.S OA 07 0.3 0.9 to,

figure 71, Percentage Error in Normalized Plasma Frequency for the Low-Los.
iApproximation (LLPA) as a Function of Measured Plasma Frequency

Ii for Various Values of Measured Collision Frequency, for a Value of

the NorWMW"e "hidwess of the Plasma Layer d 7

Lil1-7
-rJ-----



GM DIFEN69 ARESE ARitC t AORAT 601RIS *GENERVAL MOTORS C6.OPORATION

T%#-al7G

LOW LOUS AMPOWtA1OH4

-I')N

A- -01: 0 03 0. .3 A . O .9 t

-~v ISPecetgeErori--rmlze-PasaFrq-ny-orth-ow--s

Aprxmtin-A as a. Funcino esrdPam rqec

fo Vaiu Vaue of MesuedColiin--euecy-ora-- le-1

.5----------------------------------------------------- r - --8



0,M vapEmNsE RESEARCH L640OSATOUSES O9SNERAL MOTORS CORPORWATION,

LOW LOSSA~XIAON
0 it

IC-

I - - -- f -1

0- 01 0- OA 0. OA-.6 0t

Flw,7 ecnaeErri omlzdPam rqec fo th -- -- -- -- - ----

Aprxmto (L A as-- - - -ucino esrdPam rqec

fort Naiu auso eraied Polaisioa Frequency, for th le ow-os
th orsisd1 aws Ftio ofe Me=asure Plsm Frqec



*#A SEPER1 RISE9ARCH LAB@UAT@RIKS @ *NEsAL MOTORS CORPORtATIONK

LW lOSS AMPOXIAATO

.0.2) -0. 0.- - O 7

Figure 11b Percentage Error in Normalized Plasma Frequency for the Low-Loss
Approximation (LLPA) as a Function of Measured Plasma. Frequency
for Various Values of Measured Colsion Frequency, for a Valsa of

thes Normalized ThinesA" ol tOe Plasma Layer d -10



ON DEFENSE6 RRSAR.PCM LASORATORIES5 * ENERIAL MOTORS, CORPORtATIONI

TR6, -217G

=1 -

C4d

00

d P4

04

A 0410 r. aiiA
U0

F-a4



ON 09FRANSK MRESBAOC LAwOnAT60,19S * SENUAL MOTORS CORPORATION

TR~-217G

'00

0

P4 Z4-

ho
o -

1*. d
-- -- -414

*c

- l ~

-00000,0E

(3.



*M EPUSE 5tARCN LASORATO.R.AES * *ittRAL, MOT1ORS CORPORATIONJo TR63-217G

I Id
__C.

I ~~- zl i4Ii

A~ A

aWIid

d I P4



OM DXFXNOSI 09SARCW LAU@RAT@RItto SENSP0AL 0MOlTOWS C*JlPOftATI*1W

j TJW3-217G

uPwI®- ~0

- - -- - -

4 - - - -

8*0

- aa

C3

I Nfr,

2.'! 0

F104)



O* 9 900IMP 0909ACN LADOROATORIEXS 4M*6nSAl. -"-ol*#~ 4CONP@ATIOU

011f 0 - - --- a 0GG

SP

d o[ - - - -cc

[ C. to

- to

odCAlI0

Aeoo
00 O 000

I a41a



Vo

00

&-10

I--- -- q0



I Iit
I.IN

3 SO

66



77":~

OM Ip5U~t OS*~SAn,* LAOOWAT#I*R* *JNIRMA NOTO~f 09#1POSAYI@'N

.j ~±~ l 3-217G-

Id

-P4 4. 0

N. II

- -0.5

)La

-.o

-4 -



4NA

ISI11 -4

II 0 ..: 14

100

434



#A PR PEZNS 0,941AW0SJI LA*@*A*SIU81*#W 0 S14AL, SITOft 00-SP@QATI-N

TUi3-217G

C4

0 0)

CD
ob

U1 o



OM M *D5FNSR REAEAIICH LAS0evAIQ*IU* 0EF4UAL, 0M@T@P C@OPOOATIO

TRS-11G

1 0. 9 --- _ _ - - _

.... NRBA

N - UDPA
1 0.8 -- -- LLPA

1 0.7 - - - - - -.

10,
6.3

.2 -

.1 0 A 0.1 0. 4 O A 0. 0.6 07 0.3 0.9 1.0

~plre el[ Comparison between Nonreflective Boundary Approximation (NRBA),

Underdense Plasma Approximation (UDPA) and Low-Lose Plasma
Approximation, for a Value of the Normalized Thiess of th
Plasma Layer d = 1, Showing ReSims where th Nrror In ISM.1. r.Quey is low ha 1%!I

!f1 -3



4-M DEFE NS N REARC' W I4AOIATORISO O GNRAL M OTOlRS CORPORATION

0. LLPA

0.7

,! ~0.6/

i 0.5 i

4.4 '

_°_ /,_ _

0.6 - I- -

0.6 ---

03

0.5. O.5 0.6 0._ 0._ 0.9 i.0

Fiue92 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a value of the Normalized Thickness of the Plasma
Layer d a 1, Showing Regions where the. Z~rror in Collsio FrequecyIs less 1%

V -92



I
QM D9F9-NSE9 MESEARtCH L.AMORATORIR ORNERAL MOTORS CORPORATION

TR63-2170

NRBA
UDPAj 0. - - -- -------- LLPA

NOTE: THE ERROR IN NRBA IS LESS THAN 1% OVER THE
ENTIRE RANGE SHOWN

rsI 0.- --..-.

U0 0.5

[
0.4 -" .

I Mow

0.1

0.0 0.1 0.2 0.3 0A 0.5 0.6 0.7 0.8 0.9 1.0

P

Figure 93 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a value of the Normalized Thickness of the
Plasma Layer d = 3, Showing Regions where the Error In Plasma
Frequecy is less than 1-

.... F-93



M DFES-NSIE RNESARCH LAMOMATORIEtS * *ENE8AL MOT'S-li CORPORATION

TR63-217G

0.9

..... NRBA
UDPA

0.8 - -- LLPA

0.7

0.6--

0.40.5OAV - -V
0.3 - -

~/

0.2

.
0.1 -- *

0.01
0.0 o. 0.2 0.3 OA 0.5 O 0.7 0.3 0.9 t. o

Figure 94 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a Value of the Normalized Thickness of the
Plasma Layer d = 3, Showing Regions where the Error in Colilon
Frequency is less than 1%

F-94



GM DEVPENiiK RESIEARCH LANORATORIES * QENKEAL. MOTORS CORPORATION

Ii TR63-2170

~I *
1.0

1 0.9 -
NRBA
UDPA

0.0 .. LLPAI NjQNO: THE ERROR IN NRBA IS LESS THAN 1% OVER THE
ENTIRE RANGE SHOWN

0 .-0.i -

' _ _0.6

c 0.5 
-

1 0.3

0.2

0.1 -

0.01 - - - - -1_ _ _ -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

op

Figure 95 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a Value of the Normalized Thickness of the
Plasma Layer d = 5, Showing Regions Where the Error in Plasma

Ii
Frequency is less than 1%

F-95



lM DEFIENSOE RSEAI4 LA!ORATOEIES96( S9NEAI.AJ, MOTORS CQRPOIATION

TR $-217G

S1.0 -~~1

0.9 I ..... NRBA
UDPA

0.8 -------"--- - LLP

0.7

0.6

0.2--

0.1--

0.0 0. 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 1.0

Figure 96 Comparison between Nonreflective Boundary Approximation (NRBA),
UInderdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a Value of the Normalized Thickness of the
Plasma Layer d = 5, Showing Regions where the Error in Collision
Frequency is less than 1%

F-96

+Z



GM DEFENSE RESEARCH LABORATORIER GTNERAL MOTORS CORPORATION

~TR63-217G

to ®
0.9

..... __ NRBA
UDPA

0.8- --'- -- LLPA

NOTE: THE ERROR IN NRBA IS LESS THAN 1% OVER THE

ENTIRE RANGE SHOWN10.7
F. 0.6--

?" ac

± 0j - _ ----

I OA-

S0.3- -- --

0.2

o. __ _ __ _ _ _ _ __ _ __ _ _ _

03 - -_ _

0.01S0.0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0p

Figure 97 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a Value of the Normalized Thickness of the
Plasma Layer d = 10, Showing Regions where the Error in Plasma
Frequency is less than 1%

F47



GM DEFENSE RESEARCH LABORATORIES ) GENERAL MOTORS CORPORATION

TR63-217G

1.0 ---

0.9 -

NRBA
UDPA

0.8 - - LLPA

0.7

0.6 - -

Oc0.5- 
- -

- - --

0.4-- _ -

0.3 1 -- -

0.2 L

O4s
0.0 - -) ,,... ,

0.0 0.1 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 1.0
up

Figure 98 Comparison between Nonreflective Boundary Approximation (NRBA),
Underdense Plasma Approximation (UDPA) and Low-Loss Plasma
Approximation, for a Value of the Normalized Thickness of the
Plasma Layer d = 10, Showing Regions where the Error In Collision
Frequency is less than 1%
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